3.2.16 \(\int \frac {1}{\sqrt {a+a \sec (e+f x)} (c-c \sec (e+f x))^{5/2}} \, dx\) [116]

3.2.16.1 Optimal result
3.2.16.2 Mathematica [A] (verified)
3.2.16.3 Rubi [A] (verified)
3.2.16.4 Maple [A] (verified)
3.2.16.5 Fricas [F]
3.2.16.6 Sympy [F]
3.2.16.7 Maxima [B] (verification not implemented)
3.2.16.8 Giac [A] (verification not implemented)
3.2.16.9 Mupad [F(-1)]

3.2.16.1 Optimal result

Integrand size = 30, antiderivative size = 274 \[ \int \frac {1}{\sqrt {a+a \sec (e+f x)} (c-c \sec (e+f x))^{5/2}} \, dx=\frac {\log (\cos (e+f x)) \tan (e+f x)}{c^2 f \sqrt {a+a \sec (e+f x)} \sqrt {c-c \sec (e+f x)}}+\frac {7 \log (1-\sec (e+f x)) \tan (e+f x)}{8 c^2 f \sqrt {a+a \sec (e+f x)} \sqrt {c-c \sec (e+f x)}}+\frac {\log (1+\sec (e+f x)) \tan (e+f x)}{8 c^2 f \sqrt {a+a \sec (e+f x)} \sqrt {c-c \sec (e+f x)}}-\frac {\tan (e+f x)}{4 c^2 f (1-\sec (e+f x))^2 \sqrt {a+a \sec (e+f x)} \sqrt {c-c \sec (e+f x)}}-\frac {3 \tan (e+f x)}{4 c^2 f (1-\sec (e+f x)) \sqrt {a+a \sec (e+f x)} \sqrt {c-c \sec (e+f x)}} \]

output
ln(cos(f*x+e))*tan(f*x+e)/c^2/f/(a+a*sec(f*x+e))^(1/2)/(c-c*sec(f*x+e))^(1 
/2)+7/8*ln(1-sec(f*x+e))*tan(f*x+e)/c^2/f/(a+a*sec(f*x+e))^(1/2)/(c-c*sec( 
f*x+e))^(1/2)+1/8*ln(1+sec(f*x+e))*tan(f*x+e)/c^2/f/(a+a*sec(f*x+e))^(1/2) 
/(c-c*sec(f*x+e))^(1/2)-1/4*tan(f*x+e)/c^2/f/(1-sec(f*x+e))^2/(a+a*sec(f*x 
+e))^(1/2)/(c-c*sec(f*x+e))^(1/2)-3/4*tan(f*x+e)/c^2/f/(1-sec(f*x+e))/(a+a 
*sec(f*x+e))^(1/2)/(c-c*sec(f*x+e))^(1/2)
 
3.2.16.2 Mathematica [A] (verified)

Time = 1.60 (sec) , antiderivative size = 101, normalized size of antiderivative = 0.37 \[ \int \frac {1}{\sqrt {a+a \sec (e+f x)} (c-c \sec (e+f x))^{5/2}} \, dx=\frac {\left (8 \log (\cos (e+f x))+7 \log (1-\sec (e+f x))+\log (1+\sec (e+f x))-\frac {2}{(-1+\sec (e+f x))^2}+\frac {6}{-1+\sec (e+f x)}\right ) \tan (e+f x)}{8 c^2 f \sqrt {a (1+\sec (e+f x))} \sqrt {c-c \sec (e+f x)}} \]

input
Integrate[1/(Sqrt[a + a*Sec[e + f*x]]*(c - c*Sec[e + f*x])^(5/2)),x]
 
output
((8*Log[Cos[e + f*x]] + 7*Log[1 - Sec[e + f*x]] + Log[1 + Sec[e + f*x]] - 
2/(-1 + Sec[e + f*x])^2 + 6/(-1 + Sec[e + f*x]))*Tan[e + f*x])/(8*c^2*f*Sq 
rt[a*(1 + Sec[e + f*x])]*Sqrt[c - c*Sec[e + f*x]])
 
3.2.16.3 Rubi [A] (verified)

Time = 0.36 (sec) , antiderivative size = 111, normalized size of antiderivative = 0.41, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {3042, 4400, 27, 93, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\sqrt {a \sec (e+f x)+a} (c-c \sec (e+f x))^{5/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\sqrt {a \csc \left (e+f x+\frac {\pi }{2}\right )+a} \left (c-c \csc \left (e+f x+\frac {\pi }{2}\right )\right )^{5/2}}dx\)

\(\Big \downarrow \) 4400

\(\displaystyle -\frac {a c \tan (e+f x) \int \frac {\cos (e+f x)}{a c^3 (1-\sec (e+f x))^3 (\sec (e+f x)+1)}d\sec (e+f x)}{f \sqrt {a \sec (e+f x)+a} \sqrt {c-c \sec (e+f x)}}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\tan (e+f x) \int \frac {\cos (e+f x)}{(1-\sec (e+f x))^3 (\sec (e+f x)+1)}d\sec (e+f x)}{c^2 f \sqrt {a \sec (e+f x)+a} \sqrt {c-c \sec (e+f x)}}\)

\(\Big \downarrow \) 93

\(\displaystyle -\frac {\tan (e+f x) \int \left (\cos (e+f x)-\frac {7}{8 (\sec (e+f x)-1)}-\frac {1}{8 (\sec (e+f x)+1)}+\frac {3}{4 (\sec (e+f x)-1)^2}-\frac {1}{2 (\sec (e+f x)-1)^3}\right )d\sec (e+f x)}{c^2 f \sqrt {a \sec (e+f x)+a} \sqrt {c-c \sec (e+f x)}}\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {\tan (e+f x) \left (\frac {3}{4 (1-\sec (e+f x))}+\frac {1}{4 (1-\sec (e+f x))^2}-\frac {7}{8} \log (1-\sec (e+f x))+\log (\sec (e+f x))-\frac {1}{8} \log (\sec (e+f x)+1)\right )}{c^2 f \sqrt {a \sec (e+f x)+a} \sqrt {c-c \sec (e+f x)}}\)

input
Int[1/(Sqrt[a + a*Sec[e + f*x]]*(c - c*Sec[e + f*x])^(5/2)),x]
 
output
-((((-7*Log[1 - Sec[e + f*x]])/8 + Log[Sec[e + f*x]] - Log[1 + Sec[e + f*x 
]]/8 + 1/(4*(1 - Sec[e + f*x])^2) + 3/(4*(1 - Sec[e + f*x])))*Tan[e + f*x] 
)/(c^2*f*Sqrt[a + a*Sec[e + f*x]]*Sqrt[c - c*Sec[e + f*x]]))
 

3.2.16.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 93
Int[((e_.) + (f_.)*(x_))^(p_)/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), 
x_] :> Int[ExpandIntegrand[(e + f*x)^p/((a + b*x)*(c + d*x)), x], x] /; Fre 
eQ[{a, b, c, d, e, f}, x] && IntegerQ[p]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4400
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.)*(csc[(e_.) + (f_.)*(x_)]*( 
d_.) + (c_))^(n_.), x_Symbol] :> Simp[a*c*(Cot[e + f*x]/(f*Sqrt[a + b*Csc[e 
 + f*x]]*Sqrt[c + d*Csc[e + f*x]]))   Subst[Int[(a + b*x)^(m - 1/2)*((c + d 
*x)^(n - 1/2)/x), x], x, Csc[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m, n 
}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0]
 
3.2.16.4 Maple [A] (verified)

Time = 2.34 (sec) , antiderivative size = 240, normalized size of antiderivative = 0.88

method result size
default \(-\frac {\sqrt {2}\, \sqrt {-\frac {2 a}{\left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}-1}}\, \left (1-\cos \left (f x +e \right )\right ) \left (16 \ln \left (\left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}+1\right ) \left (1-\cos \left (f x +e \right )\right )^{4} \csc \left (f x +e \right )^{4}-28 \ln \left (-\cot \left (f x +e \right )+\csc \left (f x +e \right )\right ) \left (1-\cos \left (f x +e \right )\right )^{4} \csc \left (f x +e \right )^{4}-8 \left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}+1\right ) \csc \left (f x +e \right )}{32 f a \left (\left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}-1\right )^{2} \left (\frac {c \left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}}{\left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}-1}\right )^{\frac {5}{2}}}\) \(240\)
risch \(\frac {\left ({\mathrm e}^{i \left (f x +e \right )}+1\right ) \left ({\mathrm e}^{i \left (f x +e \right )}-1\right ) x}{c^{2} \sqrt {\frac {a \left ({\mathrm e}^{i \left (f x +e \right )}+1\right )^{2}}{1+{\mathrm e}^{2 i \left (f x +e \right )}}}\, \sqrt {\frac {c \left ({\mathrm e}^{i \left (f x +e \right )}-1\right )^{2}}{1+{\mathrm e}^{2 i \left (f x +e \right )}}}\, \left (1+{\mathrm e}^{2 i \left (f x +e \right )}\right )}-\frac {2 \left ({\mathrm e}^{i \left (f x +e \right )}+1\right ) \left ({\mathrm e}^{i \left (f x +e \right )}-1\right ) \left (f x +e \right )}{c^{2} \sqrt {\frac {a \left ({\mathrm e}^{i \left (f x +e \right )}+1\right )^{2}}{1+{\mathrm e}^{2 i \left (f x +e \right )}}}\, \sqrt {\frac {c \left ({\mathrm e}^{i \left (f x +e \right )}-1\right )^{2}}{1+{\mathrm e}^{2 i \left (f x +e \right )}}}\, \left (1+{\mathrm e}^{2 i \left (f x +e \right )}\right ) f}+\frac {i \left (5 \,{\mathrm e}^{2 i \left (f x +e \right )}-8 \,{\mathrm e}^{i \left (f x +e \right )}+5\right ) \left ({\mathrm e}^{2 i \left (f x +e \right )}+{\mathrm e}^{i \left (f x +e \right )}\right )}{2 c^{2} \sqrt {\frac {a \left ({\mathrm e}^{i \left (f x +e \right )}+1\right )^{2}}{1+{\mathrm e}^{2 i \left (f x +e \right )}}}\, \left ({\mathrm e}^{i \left (f x +e \right )}-1\right )^{3} \sqrt {\frac {c \left ({\mathrm e}^{i \left (f x +e \right )}-1\right )^{2}}{1+{\mathrm e}^{2 i \left (f x +e \right )}}}\, \left (1+{\mathrm e}^{2 i \left (f x +e \right )}\right ) f}-\frac {7 i \left ({\mathrm e}^{i \left (f x +e \right )}+1\right ) \left ({\mathrm e}^{i \left (f x +e \right )}-1\right ) \ln \left ({\mathrm e}^{i \left (f x +e \right )}-1\right )}{4 c^{2} \sqrt {\frac {a \left ({\mathrm e}^{i \left (f x +e \right )}+1\right )^{2}}{1+{\mathrm e}^{2 i \left (f x +e \right )}}}\, \sqrt {\frac {c \left ({\mathrm e}^{i \left (f x +e \right )}-1\right )^{2}}{1+{\mathrm e}^{2 i \left (f x +e \right )}}}\, \left (1+{\mathrm e}^{2 i \left (f x +e \right )}\right ) f}-\frac {i \left ({\mathrm e}^{i \left (f x +e \right )}+1\right ) \left ({\mathrm e}^{i \left (f x +e \right )}-1\right ) \ln \left ({\mathrm e}^{i \left (f x +e \right )}+1\right )}{4 c^{2} \sqrt {\frac {a \left ({\mathrm e}^{i \left (f x +e \right )}+1\right )^{2}}{1+{\mathrm e}^{2 i \left (f x +e \right )}}}\, \sqrt {\frac {c \left ({\mathrm e}^{i \left (f x +e \right )}-1\right )^{2}}{1+{\mathrm e}^{2 i \left (f x +e \right )}}}\, \left (1+{\mathrm e}^{2 i \left (f x +e \right )}\right ) f}\) \(580\)

input
int(1/(c-c*sec(f*x+e))^(5/2)/(a+a*sec(f*x+e))^(1/2),x,method=_RETURNVERBOS 
E)
 
output
-1/32/f*2^(1/2)/a*(-2*a/((1-cos(f*x+e))^2*csc(f*x+e)^2-1))^(1/2)/((1-cos(f 
*x+e))^2*csc(f*x+e)^2-1)^2/(c*(1-cos(f*x+e))^2/((1-cos(f*x+e))^2*csc(f*x+e 
)^2-1)*csc(f*x+e)^2)^(5/2)*(1-cos(f*x+e))*(16*ln((1-cos(f*x+e))^2*csc(f*x+ 
e)^2+1)*(1-cos(f*x+e))^4*csc(f*x+e)^4-28*ln(-cot(f*x+e)+csc(f*x+e))*(1-cos 
(f*x+e))^4*csc(f*x+e)^4-8*(1-cos(f*x+e))^2*csc(f*x+e)^2+1)*csc(f*x+e)
 
3.2.16.5 Fricas [F]

\[ \int \frac {1}{\sqrt {a+a \sec (e+f x)} (c-c \sec (e+f x))^{5/2}} \, dx=\int { \frac {1}{\sqrt {a \sec \left (f x + e\right ) + a} {\left (-c \sec \left (f x + e\right ) + c\right )}^{\frac {5}{2}}} \,d x } \]

input
integrate(1/(c-c*sec(f*x+e))^(5/2)/(a+a*sec(f*x+e))^(1/2),x, algorithm="fr 
icas")
 
output
integral(-sqrt(a*sec(f*x + e) + a)*sqrt(-c*sec(f*x + e) + c)/(a*c^3*sec(f* 
x + e)^4 - 2*a*c^3*sec(f*x + e)^3 + 2*a*c^3*sec(f*x + e) - a*c^3), x)
 
3.2.16.6 Sympy [F]

\[ \int \frac {1}{\sqrt {a+a \sec (e+f x)} (c-c \sec (e+f x))^{5/2}} \, dx=\int \frac {1}{\sqrt {a \left (\sec {\left (e + f x \right )} + 1\right )} \left (- c \left (\sec {\left (e + f x \right )} - 1\right )\right )^{\frac {5}{2}}}\, dx \]

input
integrate(1/(c-c*sec(f*x+e))**(5/2)/(a+a*sec(f*x+e))**(1/2),x)
 
output
Integral(1/(sqrt(a*(sec(e + f*x) + 1))*(-c*(sec(e + f*x) - 1))**(5/2)), x)
 
3.2.16.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 2206 vs. \(2 (242) = 484\).

Time = 0.52 (sec) , antiderivative size = 2206, normalized size of antiderivative = 8.05 \[ \int \frac {1}{\sqrt {a+a \sec (e+f x)} (c-c \sec (e+f x))^{5/2}} \, dx=\text {Too large to display} \]

input
integrate(1/(c-c*sec(f*x+e))^(5/2)/(a+a*sec(f*x+e))^(1/2),x, algorithm="ma 
xima")
 
output
-1/4*(4*(f*x + e)*cos(4*f*x + 4*e)^2 + 144*(f*x + e)*cos(2*f*x + 2*e)^2 + 
64*(f*x + e)*cos(3/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e)))^2 + 64*( 
f*x + e)*cos(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e)))^2 + 4*(f*x + 
 e)*sin(4*f*x + 4*e)^2 + 144*(f*x + e)*sin(2*f*x + 2*e)^2 + 64*(f*x + e)*s 
in(3/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e)))^2 + 64*(f*x + e)*sin(1 
/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e)))^2 + 4*f*x - (2*(6*cos(2*f* 
x + 2*e) + 1)*cos(4*f*x + 4*e) + cos(4*f*x + 4*e)^2 + 36*cos(2*f*x + 2*e)^ 
2 - 8*(cos(4*f*x + 4*e) + 6*cos(2*f*x + 2*e) - 4*cos(1/2*arctan2(sin(2*f*x 
 + 2*e), cos(2*f*x + 2*e))) + 1)*cos(3/2*arctan2(sin(2*f*x + 2*e), cos(2*f 
*x + 2*e))) + 16*cos(3/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e)))^2 - 
8*(cos(4*f*x + 4*e) + 6*cos(2*f*x + 2*e) + 1)*cos(1/2*arctan2(sin(2*f*x + 
2*e), cos(2*f*x + 2*e))) + 16*cos(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x 
+ 2*e)))^2 + sin(4*f*x + 4*e)^2 + 12*sin(4*f*x + 4*e)*sin(2*f*x + 2*e) + 3 
6*sin(2*f*x + 2*e)^2 - 8*(sin(4*f*x + 4*e) + 6*sin(2*f*x + 2*e) - 4*sin(1/ 
2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))))*sin(3/2*arctan2(sin(2*f*x 
+ 2*e), cos(2*f*x + 2*e))) + 16*sin(3/2*arctan2(sin(2*f*x + 2*e), cos(2*f* 
x + 2*e)))^2 - 8*(sin(4*f*x + 4*e) + 6*sin(2*f*x + 2*e))*sin(1/2*arctan2(s 
in(2*f*x + 2*e), cos(2*f*x + 2*e))) + 16*sin(1/2*arctan2(sin(2*f*x + 2*e), 
 cos(2*f*x + 2*e)))^2 + 12*cos(2*f*x + 2*e) + 1)*arctan2(sin(1/2*arctan2(s 
in(2*f*x + 2*e), cos(2*f*x + 2*e))), cos(1/2*arctan2(sin(2*f*x + 2*e), ...
 
3.2.16.8 Giac [A] (verification not implemented)

Time = 1.70 (sec) , antiderivative size = 141, normalized size of antiderivative = 0.51 \[ \int \frac {1}{\sqrt {a+a \sec (e+f x)} (c-c \sec (e+f x))^{5/2}} \, dx=-\frac {\frac {14 \, \log \left ({\left | c \right |} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2}\right )}{\sqrt {-a c} c {\left | c \right |}} - \frac {16 \, \log \left ({\left | c \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + c \right |}\right )}{\sqrt {-a c} c {\left | c \right |}} - \frac {21 \, {\left (c \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - c\right )}^{2} + 34 \, {\left (c \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - c\right )} c + 14 \, c^{2}}{\sqrt {-a c} c^{3} {\left | c \right |} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4}}}{16 \, f} \]

input
integrate(1/(c-c*sec(f*x+e))^(5/2)/(a+a*sec(f*x+e))^(1/2),x, algorithm="gi 
ac")
 
output
-1/16*(14*log(abs(c)*tan(1/2*f*x + 1/2*e)^2)/(sqrt(-a*c)*c*abs(c)) - 16*lo 
g(abs(c*tan(1/2*f*x + 1/2*e)^2 + c))/(sqrt(-a*c)*c*abs(c)) - (21*(c*tan(1/ 
2*f*x + 1/2*e)^2 - c)^2 + 34*(c*tan(1/2*f*x + 1/2*e)^2 - c)*c + 14*c^2)/(s 
qrt(-a*c)*c^3*abs(c)*tan(1/2*f*x + 1/2*e)^4))/f
 
3.2.16.9 Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\sqrt {a+a \sec (e+f x)} (c-c \sec (e+f x))^{5/2}} \, dx=\int \frac {1}{\sqrt {a+\frac {a}{\cos \left (e+f\,x\right )}}\,{\left (c-\frac {c}{\cos \left (e+f\,x\right )}\right )}^{5/2}} \,d x \]

input
int(1/((a + a/cos(e + f*x))^(1/2)*(c - c/cos(e + f*x))^(5/2)),x)
 
output
int(1/((a + a/cos(e + f*x))^(1/2)*(c - c/cos(e + f*x))^(5/2)), x)